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Abstract

Aspect terms extraction and opinion terms ex-
traction are two key problems of fine-grained
Aspect Based Sentiment Analysis (ABSA).
The aspect-opinion pairs can provide a global
profile about a product or service for con-
sumers and opinion mining systems. How-
ever, traditional methods can not directly out-
put aspect-opinion pairs without given aspect
terms or opinion terms. Although some recent
co-extraction methods have been proposed to
extract both terms jointly, they fail to extract
them as pairs. To this end, this paper pro-
poses an end-to-end method to solve the task
of Pair-wise Aspect and Opinion Terms Extrac-
tion (PAOTE). Furthermore, this paper treats
the problem from a perspective of joint term
and relation extraction rather than under the se-
quence tagging formulation performed in most
prior works. We propose a multi-task learn-
ing framework based on shared spans, where
the terms are extracted under the supervision
of span boundaries. Meanwhile, the pair-wise
relations are jointly identified using the span
representations. Extensive experiments show
that our model consistently outperforms state-
of-the-art methods.

1 Introduction

Fine-grained aspect-based sentiment analysis
(ABSA) or opinion mining is a field of study that
analyzes people’s detailed insights towards a prod-
uct or service. Aspect terms (AT) extraction and
opinion terms (OT) extraction are two fundamen-
tal subtasks in ABSA (Pang and Lee., 2008; Liu,
2012). Aspect terms, also named as opinion targets,
are the word sequences in the sentence describing
attributes or features of the targets. Opinion terms,
sometimes called opinion words, are those expres-
sions carrying subjective attitudes. For example,
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Figure 1: An example of the difference between co-
extraction and pair extraction of AT and OT.

in the sentence “Otherwise, this place has great
service and prices and a nice friendly atmosphere”,
the aspect terms are service, prices and atmosphere,
and the opinion terms are great and nice friendly.

Recently, a new research focus, which aims at
co-extracting the aspect and opinion terms (Wang
et al., 2016, 2017; Li and Lam, 2017; Wang and
Pan, 2018; Yu et al., 2019), has drawn increas-
ing attention in both academia and industry. Such
methods use joint models and have achieved great
progress on both subtasks. However, the extracted
AT and OT are not in pairs, and the correspond-
ing relations between them are not well extracted.
As the example sentence shown in Figure 1, (ser-
vice, great), (prices, great) and (atmosphere, nice
friendly) are three aspect-opinion pairs. In contrast,
the co-extraction methods can only output the AT
set {service, prices, atmosphere} and the OT set
{great, nice friendly} jointly.

The aspect-opinion pairs can deploy more fine-
grained sentiment analysis for review text and will
benefit many downstream applications, such as
opinion summarization and product profiling. By
referring to the aspect-opinion pairs in a review sen-
tence, customers can get a glimpse of the pros and
cons of a product or service in a short time. Based
on the promising results in previous AT and OT
extraction, one possible solution for aspect-opinion
pair extraction is to decouple the whole task into
two subtasks. Firstly, all aspect terms need to be
extracted from the sentences. Then, the OT cor-



responding to each AT can be extracted using a
Target-oriented Opinion Words Extraction (TOWE)
method (Fan et al., 2019). Though this two-stage
pipeline approach can extract aspect-opinion pairs,
it will suffer from error propagation and the pairs
extracting performance will rely heavily on the ac-
curacy of AT extraction. To this end, an end-to-end
method that can automatically extract AT and OT
as pairs is essential for fine-grained sentiment anal-
ysis and opinion mining.

Considering the significance of the aspect-
opinion pairs in review sentences, this paper targets
at a new subtask for fine-grained ABSA, named
PAOTE (Pair-wise Aspect and Opinion Terms Ex-
traction). Given a review sentence, the objective
of PAOTE is to extract all the (AT, OT) pairs. Dif-
ferent from the traditional co-extraction task of AT
and OT, PAOTE outputs AT and OT in pairs while
the co-extraction task only outputs them in separate
sets as shown in Figure 1.

Most of the previous AT and OT extraction meth-
ods formulate the task as a sequence tagging prob-
lem (Wang et al., 2016, 2017; Wang and Pan, 2018;
Yu et al., 2019), specifically using a 5-class tag set:
{BA (beginning of aspect), IA (inside of aspect),
BP (beginning of opinion), IP (inside of opinion), O
(others)}. However, the sequence tagging methods
suffer from a huge search space due to the com-
positionality of labels for extractive ABSA tasks,
which has been proven in (Lee et al., 2017b; Hu
et al., 2019). And as the example in Figure 1, the
sequence tagging methods get into trouble when
there exist one-to-many or many-to-one relations
between AT and OT in the sentence.

In this paper, we propose a span-based multi-task
framework to jointly extract both the AT/OT and
the pair-wise relations. Motivated by prior works
(Lee et al., 2017a; Luan et al., 2018), the proposed
framework firstly learns word-level representations
using a base encoder and then enumerates all pos-
sible spans on the input sentence. By sharing the
generated span representations, the AT/OT can be
extracted under the supervision of span boundaries
and class labels. Meanwhile, the pair-wise rela-
tions can be identified by computing the span-span
correspondence. We further design different en-
coder structures for the framework. To validate the
effectiveness of our method, we conduct a serial
of experiments based on public datasets. The com-
parison results show that the proposed framework
can efficiently avoid the cascading errors between

tasks and outperforms the state-of-the-art pipeline
and joint methods.

In summary, the main contributions of this paper
are concluded as follows:

1) We propose an end-to-end model for a new
task PAOTE. To the best of our knowledge, it is the
first end-to-end model that can jointly extract the
AT/OT and the pair-wise relations between them.

2) We design a novel span-based multi-task neu-
ral network for PAOTE. It can overcome the draw-
backs of sequence tagging methods by taking ad-
vantage of the span-level information. And the
mutual impact between AT/OT and their pair-wise
relations can be identified in this model.

3) We conduct extensive experiments and the
results show that our proposed model outperforms
the state-of-the-art methods.

2 Related Works

2.1 Aspect and Opinion Terms Extraction

For fine-grained ABSA, the aspect terms extraction
and opinion terms extraction are two basic subtasks,
which has been studied in numerous prior works
(Hu and Liu, 2004; Popescu and Etzioni, 2005;
Wu et al., 2009; Li et al., 2010; Qiu et al., 2011;
Liu et al., 2012, 2013, 2015; Yin et al., 2016; Xu
et al., 2019; Devlin et al., 2019). More recently,
many works concentrate on co-extracting AT and
OT using joint models. Most of the works treat
the task as a sequence tagging problem. Wang et
al. proposed a joint Recursive Neural Conditional
Random Fields (RNCRF) model by using the de-
pendency parse tree to capture dual-propagation
among AT and OT (Wang et al., 2016). Then they
extended their research and constructed a Recursive
Neural Structural Correspondence Network (RN-
SCN) for cross-domain aspect and opinion terms
co-extraction (Wang and Pan, 2018). Another out-
standing work, Coupled Multi-Layer Attentions
(CMLA) network, learns attentions for AT and
OT (Wang et al., 2017). However, all these co-
extraction methods do not consider the AT and OT
as pairs.

For the pair-wise aspect and opinion terms ex-
traction, an obvious solution is a two-stage pipeline
strategy. The first stage is to extract aspect terms.
Li et al. proposed a state-of-the-art model that
can extract aspect terms by using the truncated
history attention and the selective transformation
network (Li et al., 2018). Then in the second stage,
the target-oriented opinion terms can be extracted



with the given aspect terms. This subtask has
been proposed in a recent work (Fan et al., 2019),
where they develop a target-fused sequence tagging
method. However, the opinion detection heavily
depends on the extracted aspect accuracy, which
suffers from error propagation. Our framework
is the first to joint perform the two subtasks into
an end-to-end model. Moreover, our method does
not need any external lexicons or parsers and can
effectively deal with multiple relations.

2.2 Joint Entity and Relation Extraction

Joint Entity and Relation Extraction (JERE), which
aims to detect entity mentions and their semantic
relations simultaneously in text, is an important
task in information extraction. The earliest works
mostly depend on feature engineering approaches
(Kate and Mooney, 2010; Hoffmann et al., 2011;
Li and Ji, 2014; Miwa and Sasaki, 2014). In recent
studies, neural models for JERE have shown supe-
rior performance (Katiyar and Cardie, 2016; Zhang
et al., 2017; Miwa and Bansal, 2016; Zheng et al.,
2017). Moreover, neural multi-task learning has
been shown effective in enhancing the interaction
between entities and relations. In this paper, we
adopt a JERE paradigm to solve the PAOTE task
and develop a multi-task framework by extending
previous unified setups (Luan et al., 2018) and end-
to-end span-based models (Lee et al., 2017a, 2018).

3 Span-based Multi-task Framework

3.1 Problem Definition

Given an input sentence S = {w1, w2, ..., wN} of
N words, the PAOTE task is to extract a set of all
the aspect terms AT = {at1, at2, .., ati}, a set of
all the opinion terms OT = {ot1, ot2, ..., otj} and
a set of all the (AT, OT) pairs P = {(atm, otn), ...}
from the sentence. Note that the atm ∈ AT and
the otn ∈ OT could be a single word or a phrase.
Inspired by JERE methods, we process the task in
a span-based term-relation joint extraction scheme
rather than as a sequence tagging problem. Firstly,
all possible spans SP = {s1, s2, ..., sK} are enu-
merated from the given sentence, where each span
is a slice (up to a reasonable length ls) of the input
sentence. Based on the candidate spans, the outputs
are two folds: 1) the term types T for all spans SP ,
aiming at the AT/OT recognition; 2) the pair-wise
relationR for all pair of spans SP × SP , aiming
at the (AT, OT) pair identification. Formally, the
two subtasks are defined as follows:

• Term Recognition is to assign a unique term
label T ∈ {A,O, null} to each candidate
span sc, where A denotes sc ∈ AT , O de-
notes sc ∈ OT and null denotes that the span
does not belong to AT or OT .

• Pair-wise Relation Identification is to as-
sign a binary label R ∈ {True, False} to
each ordered span pair (sc1, sc2). Note that
the pair-wise relation is defined as a directed
relation which always starts from an aspect
term and points to an opinion term. So in this
formulation, sc1 acts as AT and sc2 acts as OT.
True denotes that sc1 and sc2 are correctly
associated.

3.2 Framework
The overall architecture of our span-based multi-
task framework (SpanMlt) is shown in Figure 2.
Given an input sentence, a base encoder is adopted
to learn contextualized word representations. Then,
a span generator is deployed to enumerate all pos-
sible spans, which are represented based on the
hidden outputs of the base encoder. For the multi-
task learning setup, the span representations are
shared for two output scorers. The term scorer is
to assign the term label with the highest score to
each span. And the relation scorer is to evaluate
the pair-wise correspondence between every two
spans and assign a binary label to each span pair.

3.3 Span Generator
Given an input sentence {w1, w2, ..., wN}, a span
si = {wSTART(i), ..., wEND(i)} is a single word
or phrase with a starting index START(i) and an
ending index END(i). And the maximum length
of si is ls:

1 ≤ START(i) ≤ END(i) ≤ N (1)

END(i)− START(i) < ls (2)

The span generator is a component enumerating
all possible spans to generate the candidates for
aspect or opinion terms. Then each span will be
represented by using the contextualized word rep-
resentations learned from various base encoders.

3.4 Base Encoders for Span Representations
Noting that SpanMlt is a general framework, we
can potentially leverage any network as the encoder
to learn word-level representations, which would
be shared by higher-level modules. In this paper,
we implement two different encoders. One is the



Figure 2: The overall architecture of the span-based multi-task framework, which alternatively takes a BERT
structure or a BiLSTM structure as the base encoder to learn representations for input words and candidate spans.

BiLSTM with pre-trained word embeddings, which
has been widely used in numerous neural-based
models for NLP tasks. The other is BERT (Devlin
et al., 2018), a pre-trained bidirectional transformer
encoder which has achieved state-of-the-art perfor-
mances across a variety of NLP tasks.

3.4.1 BiLSTM Encoder
For the BiLSTM encoder, the input vectors
{x1, x2, ..., xN} are generated for the word se-
quence firstly. Motivated by (Lee et al., 2017a;
Luan et al., 2018), two strategies are involved in
building the vector representations: 1) pre-trained
word embeddings and 1-dimension CNN over char-
acters; 2) fixed ELMo embeddings. Then, a bidi-
rectional LSTM network is used to encode each
word xt:

ht = [
←−−−−
LSTM(xt);

−−−−→
LSTM(xt)], t ∈ [1, N ] (3)

where ht is the concatenated hidden output of BiL-
STM.

To better learn vector representations combined
with the syntactic head information for each candi-
date span, we further employ a self-attention layer
over the word vectors in the span. Following pre-
vious works (Yang et al., 2016; Zhou et al., 2016),
the attention is implemented with a feed forward
neural network (FFNN):

ut = FFNNα(ht, θα) (4)

αi,t =
exp(ut)

END(i)∑
k=START(i)

exp(uk)

(5)

ĥi =

END(i)∑
k=START(i)

αi,t · ut (6)

where θα is the parameters for FFNN, and ĥi is a
weighted sum of word vectors in span si. There-
fore, based on the BiLSTM encoder, the final rep-
resentation pi for span si can be concatenated as:

pi = [hSTART(i);hEND(i); ĥi;φ(i)] (7)

where φ(i) is the feature vector encoding the size
of the span si.

3.4.2 BERT Encoder
For the BERT encoder, the input sequence is gener-
ated by concatenating a [CLS] token, the original
word sequence, and a [SEP] token. Each token is
converted into an input vector xt by summing the
token, segment, and position embeddings. Assume
BERT(·) is the base (or fine-tuned) BERT model.
The hidden representation for each token can be
obtained:

ht = BERT(xt) (8)

Then the span vector representation pi is directly
generated by hSTART(i) and hEND(i):

pi = [hSTART(i);hEND(i)] (9)

Unlike the BiLSTM encoder, we do not use the
self-attention or the feature vector for the BERT en-
coder. Since the transformer of BERT has already
utilized the attention mechanism and can learn suf-
ficient contextualized information. And from our
preliminary investigations and experiments, most
complicated structures may damage the availabil-
ity of BERT architecture and increase the training
difficulty, which will be discussed in Section 4.

3.5 Objective
To construct the loss function for joint training,
we use FFNNs over shared span representations to



compute the scores of how likely a span si has a
term label yTi , and how likely a span pair (si, sj)
has a relation label yRi,j , respectively.

3.5.1 Term Scorer
For the term score, each span representation pi is
fed into an FFNN, and then is normalized with the
softmax function to output the probability of the
term label:

fTi = FFNNT (pi, θT ) (10)

P (yTi |si) = Softmax(fTi ) (11)

Thus, the loss function for the term extraction sub-
task can be formulated using the span-level cross-
entropy error between the predicted distribution
P (yTi |si) and the gold distribution P (yTi

∗|si):

Loss(T ) = −
k∑
i=1

P (yTi
∗|si)log(P (yTi |si)) (12)

3.5.2 Relation Scorer
For the pair-wise relation score between two spans
(si, sj), we first compute the probability that a span
is in a relation:

fRs
i = FFNNRs(pi, θRs) (13)

In order to reduce the number of generated pairs,
we sort the spans according to their scorers fRsi and
only the top-k spans are selected to be paired. Then,
to measure the correspondence between two spans,
the representation pi for span si, the representation
pj for span sj , and an element-wise multiplication
pi � pj are concatenated as the input of FFNN:

fRi,j = FFNNR([pi;pj ;pi � pj ], θR) (14)

The span scores and the correspondence score are
summed and fed into the output softmax function:

P (yRi,j |(si, sj)) = Softmax(fRs
i + fRs

j + fRi,j) (15)

Thus, the loss function for the pair-wise relation
extraction subtask can be formulated using the pair-
level cross-entropy error between the predicted dis-
tribution P (yRi,j |(si, sj)) and the gold distribution
P (yRi,j

∗|(si, sj)):

Loss(R) = −
k∑
i=1

k∑
j=1

P (yRi,j
∗|(si, sj))log(P (yRi,j |(si, sj)))

(16)

Finally, losses from the term scorer and the relation
scorer are combined as the training objective of the
SpanMlt framework:

J(θ) = λT Loss(T ) + λRLoss(R) (17)

where λT and λR are two hyper-parameters to bal-
ance the two tasks.

4 Experiments

4.1 Datasets

We evaluate our framework on two sets of pub-
lic datasets, which are both in LAPTOP and
RESTAURANT domains from Semeval 2014 Task
4, Semeval 2015 Task 12 and Semeval 2016 Task 5.
One is provided by (Fan et al., 2019), where the AT
and OT pairs are labeled. The other is provided by
(Wang et al., 2017, 2016), where only the aspect
terms and opinion terms are labeled.

4.2 Baselines

Since we are the first to study the joint extraction
task of pair-wise AT and OT, there is no available
end-to-end model in the literature to be compared.
To better evaluate our method, we first compare
the AT/OT extraction performances with several
widely used sequence tagging models which
are constructed by different encoder structures.
Then we compare with three joint models, which
have achieved state-of-the-art results in AT&OT
co-extraction. To evaluate the extraction of
(AT, OT) pairs, we further implement a pipeline
approach HAST+TOWE. Moreover, since we
formulate our problem as a joint term and relation
extraction task, we also compare with a joint entity
and relation extraction method JERE-MHS. These
baselines are introduced as follows:
BiLSTM+CRF A sequence tagging method with
a BiLSTM network built on top of pre-trained
word embeddings, followed by a CRF output layer
to perform BIO classification.
BERT+CRF A sequence tagging method based
on a BERT encoder. The output hidden states of
input words are taken as the features for CRF.
BERT+BiLSTM+CRF A sequence tagging
method based on a BERT encoder. The output
hidden states of input words are fed into a BiLSTM
structure and then followed by an output CRF
layer.
RNCRF A joint model of recursive neural network
and CRF, proposed by (Wang et al., 2016) for
single-domain AT and OT extraction.
CMLA A joint model of multi-layer attentions
proposed by (Wang et al., 2017).
GMTCMLA A global inference model based on
CMLA proposed by (Yu et al., 2019).
RNSCN A joint model proposed by (Wang and
Pan, 2018) for cross-domain aspect and opinion
terms extraction.



Models 14lap 14res 15res 16res
AT OT Pair AT OT Pair AT OT Pair AT OT Pair

BiLSTM+CRF 69.80 64.96 - 78.03 75.13 - 66.27 64.70 - 70.43 73.33 -
BERT+CRF 56.38 50.14 - 54.37 48.41 - 57.01 45.95 - 55.83 49.38 -
BERT+BiLSTM+CRF 56.99 51.33 - 54.08 51.53 - 55.85 47.79 - 55.18 51.53 -
RNCRF 74.92 67.21 - 75.18 67.95 - 74.14 64.50 - 73.12 65.51 -
CMLA 75.57 66.27 - 76.08 66.32 - 78.31 66.15 - 76.84 65.73 -
RNSCN 73.71 75.89 - 82.12 81.67 - 71.02 69.78 - 75.11 72.18 -
HAST+TOWE (pipeline) 79.14 67.50 53.41 82.56 75.10 62.39 79.84 68.45 58.12 81.44 75.71 63.84
JERE-MHS 74.61 64.02 52.34 79.79 77.44 66.02 75.00 71.38 59.64 76.08 78.02 67.65
SpanMlt (ours) 84.51 80.61 68.66 87.42 83.98 75.60 81.76 78.91 64.68 85.62 85.33 71.78

Table 1: Main results (F1-score) for AT, OT and (AT, OT) pairs extraction on the four datasets from (Fan et al.,
2019). State-of-the-art results are marked bold. SpanMlt with the best model setup achieves 15.25%, 9.58%, 5.04%
and 4.13% absolute gains compared to the best pair extraction methods.

Models 14lap 14res 15res
AT OT AT OT AT OT

RNCRF 78.42 79.44 84.93 84.11 67.47 67.62
CMLA 77.80 80.17 85.29 83.18 70.73 73.68
GMTCMLA 78.69 79.89 84.50 85.20 70.53 72.78
SpanMlt 77.87 80.51 85.24 85.79 71.07 75.02

Table 2: F1-scores for AT/OT extraction on the three
datasets from (Wang et al., 2016, 2017).

HAST+TOWE (pipeline) A pipeline approach
where the AT are first detected using a model
proposed by (Li et al., 2018). Then given the
predicted AT, the OT are extracted using a recent
TOWE method (Fan et al., 2019). In this way,
the pair-wise relation between AT and OT can be
established.
JERE-MHS A model for joint entity-relation
extraction, proposed by (Bekoulis et al., 2018).
Although there are a number of complicated
models for JERE, few works can simultaneously
classify the entity types and the relation types.
This method is the outstanding one which can be
appropriate to solve our PAOTE task.

4.3 Hyperparameter Settings

For the BiLSTM encoder, we use the 300d GloVe
word embeddings pre-trained on unlabeled data of
840 billion tokens1. We use a 3-layer BiLSTM with
100-dimension hidden states. The 8-dimensional
char embeddings are randomly initialized. For the
character CNN, the filter size is 50 with window
sizes of 3, 4 and 5. The ELMo embeddings, pre-
trained by a 3-layer BiLSTM with 1024 hidden
states are fixed and not fine-tuned during the train-
ing stage. We use 0.4 dropout for the BiLSTMs and
0.5 dropout for the embeddings. The FFNNs are
50-dimensional with 2 hidden layers. The learning
rate is set to be 0.005 for Adam optimizer.

For the BERT encoder, we use the pre-trained
uncased BERTbase model2, and run pre-training
on 14lap train set and on the sum of 14res,

1https://nlp.stanford.edu/projects/glove/
2https://github.com/google-research/bert

15res and 16res train set to get the domain-
specific BERTfinetune models, for LAPTOP and
RESTAURANT respectively. The maximum se-
quence length is 512 with a batch size of 8. The
FFNNs are 512-dimensional with a single hidden
layer. The learning rate is set to 2e-5 for Adam
optimizer.

The maximum length of generated spans is set to
8 and top 40% are candidate for pairs. λT and λR
are both set to 1.0. We randomly split 10% of the
train sets as dev sets for tuning the hyperparameters.
Note that, all the baseline methods are implemented
using their publicly released source codes. All the
compared models are trained with best settings and
the results for test sets are reported when it achieves
the best performances on the dev sets.

4.4 Evaluation Metrics
We report F1 scores that measure the performance
of our model and all the compared methods respec-
tively for the three subtasks: AT extraction, OT
extraction, and pair-wise relation extraction. An
extracted AT or OT is regarded as a correct predic-
tion when the boundaries of the span are identical
to the ground-truth, and the term label is accurately
assigned. An extracted pair-wise relation is correct
only when both AT and OT are accurately identified
and the relation label is accurately predicted.

4.5 Main Results
The main results are shown in Table 1. Our
SpanMlt framework consistently achieves the best
scores, both for the AT/OT extraction task and
the pair-wise relation extraction task. For AT/OT
extraction, the performance of sequence tagging
methods is not satisfactory and the BERT-based
models perform worst among all these methods.
This suggests that BERT may not work well when
the dataset for fine-tuning is small. The AT and
OT co-extraction models perform much better than
sequence tagging methods, indicating that the inter-



Models 14lap 14res 15res 16res
AT OT Pair AT OT Pair AT OT Pair AT OT Pair

SpanMlt-BERTbase 80.41 78.12 62.88 84.46 84.07 72.06 75.12 78.14 60.48 79.38 84.13 67.96
SpanMlt-BERTfinetune 80.78 79.71 65.75 84.26 84.11 72.72 77.71 78.47 61.06 80.95 84.92 69.58
SpanMlt-BiLSTM 81.30 77.58 64.41 83.02 83.42 73.80 80.14 76.48 59.91 82.44 83.87 67.72
- attention 78.69 76.83 62.88 82.55 81.22 71.97 79.48 75.12 59.22 81.90 83.50 67.21
- char embeddings 75.22 71.09 56.20 76.06 78.90 64.20 79.01 74.41 59.06 78.85 81.55 64.17
SpanMlt-BiLSTM-ELMo 84.51 80.61 68.66 87.42 83.98 75.60 81.76 78.91 64.68 85.62 85.33 71.78

Table 3: Comparisons for SpanMlt with different base encoders.

actions between AT and OT are significant for term
extraction. However, all these joint models fail to
associate AT and OT as pairs. For pair-wise AT/OT
extraction, the HAST+TOWE pipeline method out-
performs most other models on aspect detection,
but the F1 scores of opinion extraction and pair ex-
traction is much lower than that of SpanMlt, which
is primarily due to the error propagation. Another
joint entity and relation extraction method, namely
JERE-MHS, performs worse than HAST for as-
pect extraction, but better than TOWE for opinion
extraction.

To evaluate the efficacy of SpanMlt on sepa-
rate AT or OT extraction more intuitively, we fur-
ther compare with two state-of-the-art models on
the larger public datasets from (Wang et al., 2016,
2017), which has no (AT, OT) pair labeled. Table
2 shows that our SpanMlt also achieves compara-
ble results. The minor gap is because there exist
some sentences only with AT or OT and without
pair-wise relations in this dataset. Thus leads our
method to fail to involve the impact of pair-wise
relations.

4.6 Framework Analysis

Base Encoders. To further investigate the effi-
cacy of different base encoders for our framework,
namely, BiLSTM encoder and BERT encoder, we
do experiments as shown in Table 3. The BiL-
STM encoder with ELMo embeddings performs
the best, which indicates the importance of initial-
ized input embeddings. When using pre-trained
Glove embeddings for BiLSTM encoder, the re-
sults are also satisfactory. An ablation study for
the two key components, attention mechanism and
char embeddings for BiLSTM encoder, suggests
that both components are helpful for improving the
performance. The BERTbase encoder performs
better in OT extraction but is inferior to the BiL-
STM without ELMo in AT extraction. By using
the BERTfinetune model, the performance is im-
proved, which indicates that introducing domain-
specific information can help BERT to learn better
contextualized word presentations. Figure 3 shows

Figure 3: F1 curves on 14lap dataset for the two tasks,
using the base BERT model or fine-tuned BERT mod-
els with increasing training steps.

AT OT Pair
Multi-task (SpanMlt) 84.51 80.61 68.66
Single-task Term 83.70 79.09 -
Single-task Relation - - 64.19

Table 4: Ablation study for multi-task learning on
14lap test set.

F1 curves with increasing training steps for fine-
tuning BERT on our 14lap train set. We can see
that the score first increases and achieves the high-
est at 5000-6000 steps. But then it decreases as
the steps increasing. This result demonstrates that
despite the domain-specific information is useful,
too many steps on fine-tuning the pre-trained BERT
models may not benefit the downstream tasks.
Multi-task Setup. We evaluate the effect of multi-
task learning for the term extraction subtask and
the pair-wise relation extraction subtask defined in
our SpanMlt framework. Table 4 reports the F1
scores for an ablation study on 14lap test set. It
is observed that the performance improves when
learning the two tasks jointly compared with each
single task. In addition, to investigate the balance
between the two subtasks for multi-task learning,
we also draw the F1 curves when adjusting the loss
weights λT and λR, as shown in Figure 4. By vary-
ing λT /λR, we can see that the model attains the
best performance at 1.00 for AT/OT extraction and
1.25 for pair-wise relation extraction. Nevertheless,
our multi-task framework is relatively robust when
varying the weight settings for the two subtasks.



Sentence HAST+TOWE SpanMlt

I’ve had it for about 2 months now and found no issues with
software or updates.

(software, no issues)X
(software, no issues)X,
(updates, no issues)X

I seem to be having repeat problems as the Mother Board in
this one is diagnosed as faulty, related to the graphics card.

(Mother Board, problems)×,
(graphics card, faulty)X

(Mother Board, faulty)X,
(graphics card, faulty)X

Every time I log into the system after a few hours , there is this
endlessly frustrating process that I have to go through.

(system, frustrating)×

My laptop with Windows 7 crashed and I did not want Win-
dows 8.

(Windows 8, crashed)× (Windows 7, crashed)X

Table 5: Case study. The golden AT and OT in the sentences are colored as blue and red respectively. And the
correct predictions are marked with X and incorrect predictions are marked with ×.

Figure 4: F1 curves on 14lap test set for the two tasks
using the best model setup when adjusting the loss bal-
ance, λT /λR.

(a) span length (b) top k

Figure 5: Effect of the maximum span length ls and
the top k of candidate spans with highest scores to be
paired for our framework.

Parameter Sensitivity. Figure 5 shows F1 scores
with different maximum span length ls and differ-
ent top k of candidate spans to generate pairs on
14lap test set. We can see that F1 scores first
increases as ls becomes larger. But it slows the
growth when the maximum span length is larger
than 8. This indicates that too small ls could not
include all the useful words to generate the spans
with accurate boundaries. Nevertheless, the extrac-
tion performance is not sensitive to maximum span
length. For example, the difference between 8 and
20 are not statistically significant. For the number
of candidate spans to generate pairs, top k, we can
observe similar trends as that of span length. Too
small k may cause that many correct AT and OT
are not included in the candidate set, while large k
will not improve extraction performance and may
cost more training time.

4.7 Case Study

As mentioned previously, SpanMlt is able to iden-
tify one-to-many or many-to-one relationships be-
tween aspect and opinion terms. To verify that, we
pick some examples from the test set of 14lap
and show the prediction results of SpanMlt and the
pipeline approach HAST+TOWE, as presented in
Table 5. In the first two cases, we can see that Span-
Mlt can correctly assign the same opinion term for
two appositive aspect terms. While the pipeline
method is less effective when dealing the one-to-
many relations either by missing the correct AT
(e.g. “updates”) or assigning the incorrect OT (e.g.
“problems”). Moreover, we find that our method
may sometimes fail to recognize term boundaries
(e.g., “log into the system” in case 3). There are
also some bad cases due to the fact that our method
fails to extract all pairs (e.g. “Windows8” and “not
want” in case 4 are missed).

5 Conclusion

In this paper, we study a novel task Pair-wise As-
pect and Opinion Terms Extraction (PAOTE). We
treat this task as a joint term and relation extrac-
tion problem and develop a span-based multi-task
learning framework (SpanMlt). Our framework can
effectively learn contextualized information with
various base encoders. Specifically, we try two
different encoders (BiLSTM encoder and BERT
encoder). Then a span generator enumerates all
possible spans and each span is represented based
on the outputs of the encoders. For joint optimiz-
ing the objectives of term extraction and pair-wise
relation extraction, the two subtasks share the span
representations and the losses are combined. The
experimental results demonstrate that our SpanMlt
significantly outperforms all the compared meth-
ods. For future works, we will explore pair-wise
AT and OT extraction together with aspect category
and sentiment polarity classification.
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