Rationalizing Text Matching: Learning Sparse Alignments via Optimal Transport

Kyle Swanson, Lili Yu, Tao Lei

Abstract Paper Share

Interpretability and Analysis of Models for NLP Long Paper

Session 9B: Jul 7 (18:00-19:00 GMT)
Session 10A: Jul 7 (20:00-21:00 GMT)
Abstract: Selecting input features of top relevance has become a popular method for building self-explaining models. In this work, we extend this selective rationalization approach to text matching, where the goal is to jointly select and align text pieces, such as tokens or sentences, as a justification for the downstream prediction. Our approach employs optimal transport (OT) to find a minimal cost alignment between the inputs. However, directly applying OT often produces dense and therefore uninterpretable alignments. To overcome this limitation, we introduce novel constrained variants of the OT problem that result in highly sparse alignments with controllable sparsity. Our model is end-to-end differentiable using the Sinkhorn algorithm for OT and can be trained without any alignment annotations. We evaluate our model on the StackExchange, MultiNews, e-SNLI, and MultiRC datasets. Our model achieves very sparse rationale selections with high fidelity while preserving prediction accuracy compared to strong attention baseline models.
You can open the pre-recorded video in a separate window.
NOTE: The SlidesLive video may display a random order of the authors. The correct author list is shown at the top of this webpage.

Similar Papers

A Methodology for Creating Question Answering Corpora Using Inverse Data Annotation
Jan Deriu, Katsiaryna Mlynchyk, Philippe Schläpfer, Alvaro Rodrigo, Dirk von Grünigen, Nicolas Kaiser, Kurt Stockinger, Eneko Agirre, Mark Cieliebak,
A representative figure from paper main.84
The Right Tool for the Job: Matching Model and Instance Complexities
Roy Schwartz, Gabriel Stanovsky, Swabha Swayamdipta, Jesse Dodge, Noah A. Smith,
A representative figure from paper main.593
Unsupervised Cross-lingual Representation Learning at Scale
Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, Veselin Stoyanov,
A representative figure from paper main.747