Hyperbolic Capsule Networks for Multi-Label Classification
Boli Chen, Xin Huang, Lin Xiao, Liping Jing
NLP Applications Long Paper
Session 6A: Jul 7
(05:00-06:00 GMT)
Session 7B: Jul 7
(09:00-10:00 GMT)
Abstract:
Although deep neural networks are effective at extracting high-level features, classification methods usually encode an input into a vector representation via simple feature aggregation operations (e.g. pooling). Such operations limit the performance. For instance, a multi-label document may contain several concepts. In this case, one vector can not sufficiently capture its salient and discriminative content. Thus, we propose Hyperbolic Capsule Networks (HyperCaps) for Multi-Label Classification (MLC), which have two merits. First, hyperbolic capsules are designed to capture fine-grained document information for each label, which has the ability to characterize complicated structures among labels and documents. Second, Hyperbolic Dynamic Routing (HDR) is introduced to aggregate hyperbolic capsules in a label-aware manner, so that the label-level discriminative information can be preserved along the depth of neural networks. To efficiently handle large-scale MLC datasets, we additionally present a new routing method to adaptively adjust the capsule number during routing. Extensive experiments are conducted on four benchmark datasets. Compared with the state-of-the-art methods, HyperCaps significantly improves the performance of MLC especially on tail labels.
You can open the
pre-recorded video
in a separate window.
NOTE: The SlidesLive video may display a random order of the authors.
The correct author list is shown at the top of this webpage.
Similar Papers
Embeddings of Label Components for Sequence Labeling: A Case Study of Fine-grained Named Entity Recognition
Takuma Kato, Kaori Abe, Hiroki Ouchi, Shumpei Miyawaki, Jun Suzuki, Kentaro Inui,

Every Document Owns Its Structure: Inductive Text Classification via Graph Neural Networks
Yufeng Zhang, Xueli Yu, Zeyu Cui, Shu Wu, Zhongzhen Wen, Liang Wang,

Modeling Label Semantics for Predicting Emotional Reactions
Radhika Gaonkar, Heeyoung Kwon, Mohaddeseh Bastan, Niranjan Balasubramanian, Nathanael Chambers,

Hierarchy-Aware Global Model for Hierarchical Text Classification
Jie Zhou, Chunping Ma, Dingkun Long, Guangwei Xu, Ning Ding, Haoyu Zhang, Pengjun Xie, Gongshen Liu,
