Embarrassingly Simple Unsupervised Aspect Extraction
Stéphan Tulkens, Andreas van Cranenburgh
Sentiment Analysis, Stylistic Analysis, and Argument Mining Short Paper
Session 6A: Jul 7
(05:00-06:00 GMT)
Session 7B: Jul 7
(09:00-10:00 GMT)
Abstract:
We present a simple but effective method for aspect identification in sentiment analysis. Our unsupervised method only requires word embeddings and a POS tagger, and is therefore straightforward to apply to new domains and languages. We introduce Contrastive Attention (CAt), a novel single-head attention mechanism based on an RBF kernel, which gives a considerable boost in performance and makes the model interpretable. Previous work relied on syntactic features and complex neural models. We show that given the simplicity of current benchmark datasets for aspect extraction, such complex models are not needed. The code to reproduce the experiments reported in this paper is available at https://github.com/clips/cat.
You can open the
pre-recorded video
in a separate window.
NOTE: The SlidesLive video may display a random order of the authors.
The correct author list is shown at the top of this webpage.