Learning to Customize Model Structures for Few-shot Dialogue Generation Tasks
Yiping Song, Zequn Liu, Wei Bi, Rui Yan, Ming Zhang
Dialogue and Interactive Systems Long Paper
Session 11A: Jul 8
(05:00-06:00 GMT)
Session 13B: Jul 8
(13:00-14:00 GMT)
Abstract:
Training the generative models with minimal corpus is one of the critical challenges for building open-domain dialogue systems. Existing methods tend to use the meta-learning framework which pre-trains the parameters on all non-target tasks then fine-tunes on the target task. However, fine-tuning distinguishes tasks from the parameter perspective but ignores the model-structure perspective, resulting in similar dialogue models for different tasks. In this paper, we propose an algorithm that can customize a unique dialogue model for each task in the few-shot setting. In our approach, each dialogue model consists of a shared module, a gating module, and a private module. The first two modules are shared among all the tasks, while the third one will differentiate into different network structures to better capture the characteristics of the corresponding task. The extensive experiments on two datasets show that our method outperforms all the baselines in terms of task consistency, response quality, and diversity.
You can open the
pre-recorded video
in a separate window.
NOTE: The SlidesLive video may display a random order of the authors.
The correct author list is shown at the top of this webpage.