Transition-based Semantic Dependency Parsing with Pointer Networks
Daniel Fernández-González, Carlos Gómez-Rodríguez
Semantics: Sentence Level Long Paper
Session 12A: Jul 8
(08:00-09:00 GMT)
Session 13A: Jul 8
(12:00-13:00 GMT)
Abstract:
Transition-based parsers implemented with Pointer Networks have become the new state of the art in dependency parsing, excelling in producing labelled syntactic trees and outperforming graph-based models in this task. In order to further test the capabilities of these powerful neural networks on a harder NLP problem, we propose a transition system that, thanks to Pointer Networks, can straightforwardly produce labelled directed acyclic graphs and perform semantic dependency parsing. In addition, we enhance our approach with deep contextualized word embeddings extracted from BERT. The resulting system not only outperforms all existing transition-based models, but also matches the best fully-supervised accuracy to date on the SemEval 2015 Task 18 datasets among previous state-of-the-art graph-based parsers.
You can open the
pre-recorded video
in a separate window.
NOTE: The SlidesLive video may display a random order of the authors.
The correct author list is shown at the top of this webpage.