ZeroShotCeres: Zero-Shot Relation Extraction from Semi-Structured Webpages
Colin Lockard, Prashant Shiralkar, Xin Luna Dong, Hannaneh Hajishirzi
Information Extraction Long Paper
Session 14A: Jul 8
(17:00-18:00 GMT)
Session 15A: Jul 8
(20:00-21:00 GMT)
Abstract:
In many documents, such as semi-structured webpages, textual semantics are augmented with additional information conveyed using visual elements including layout, font size, and color. Prior work on information extraction from semi-structured websites has required learning an extraction model specific to a given template via either manually labeled or distantly supervised data from that template. In this work, we propose a solution for "zero-shot" open-domain relation extraction from webpages with a previously unseen template, including from websites with little overlap with existing sources of knowledge for distant supervision and websites in entirely new subject verticals. Our model uses a graph neural network-based approach to build a rich representation of text fields on a webpage and the relationships between them, enabling generalization to new templates. Experiments show this approach provides a 31% F1 gain over a baseline for zero-shot extraction in a new subject vertical.
You can open the
pre-recorded video
in a separate window.
NOTE: The SlidesLive video may display a random order of the authors.
The correct author list is shown at the top of this webpage.
Similar Papers
Improving Massively Multilingual Neural Machine Translation and Zero-Shot Translation
Biao Zhang, Philip Williams, Ivan Titov, Rico Sennrich,

Improving Neural Machine Translation with Soft Template Prediction
Jian Yang, Shuming Ma, Dongdong Zhang, Zhoujun Li, Ming Zhou,

Few-shot Slot Tagging with Collapsed Dependency Transfer and Label-enhanced Task-adaptive Projection Network
Yutai Hou, Wanxiang Che, Yongkui Lai, Zhihan Zhou, Yijia Liu, Han Liu, Ting Liu,

Zero-shot Text Classification via Reinforced Self-training
Zhiquan Ye, Yuxia Geng, Jiaoyan Chen, Jingmin Chen, Xiaoxiao Xu, Suhang Zheng, Feng Wang, Jun Zhang, Huajun Chen,
