Breaking Through the 80% Glass Ceiling: Raising the State of the Art in Word Sense Disambiguation by Incorporating Knowledge Graph Information
Michele Bevilacqua, Roberto Navigli
Semantics: Lexical Long Paper
Session 4B: Jul 6
(18:00-19:00 GMT)
Session 5B: Jul 6
(21:00-22:00 GMT)
Abstract:
Neural architectures are the current state of the art in Word Sense Disambiguation (WSD). However, they make limited use of the vast amount of relational information encoded in Lexical Knowledge Bases (LKB). We present Enhanced WSD Integrating Synset Embeddings and Relations (EWISER), a neural supervised architecture that is able to tap into this wealth of knowledge by embedding information from the LKB graph within the neural architecture, and to exploit pretrained synset embeddings, enabling the network to predict synsets that are not in the training set. As a result, we set a new state of the art on almost all the evaluation settings considered, also breaking through, for the first time, the 80% ceiling on the concatenation of all the standard all-words English WSD evaluation benchmarks. On multilingual all-words WSD, we report state-of-the-art results by training on nothing but English.
You can open the
pre-recorded video
in a separate window.
NOTE: The SlidesLive video may display a random order of the authors.
The correct author list is shown at the top of this webpage.