Masking Actor Information Leads to Fairer Political Claims Detection

Erenay Dayanik, Sebastian Padó

Abstract Paper Share

Computational Social Science and Social Media Short Paper

Session 8A: Jul 7 (12:00-13:00 GMT)
Session 10A: Jul 7 (20:00-21:00 GMT)
Abstract: A central concern in Computational Social Sciences (CSS) is fairness: where the role of NLP is to scale up text analysis to large corpora, the quality of automatic analyses should be as independent as possible of textual properties. We analyze the performance of a state-of-the-art neural model on the task of political claims detection (i.e., the identification of forward-looking statements made by political actors) and identify a strong frequency bias: claims made by frequent actors are recognized better. We propose two simple debiasing methods which mask proper names and pronouns during training of the model, thus removing personal information bias. We find that (a) these methods significantly decrease frequency bias while keeping the overall performance stable; and (b) the resulting models improve when evaluated in an out-of-domain setting.
You can open the pre-recorded video in a separate window.
NOTE: The SlidesLive video may display a random order of the authors. The correct author list is shown at the top of this webpage.

Similar Papers