Multi-Domain Named Entity Recognition with Genre-Aware and Agnostic Inference

Jing Wang, Mayank Kulkarni, Daniel Preotiuc-Pietro

Abstract Paper Share

Information Extraction Long Paper

Session 14B: Jul 8 (18:00-19:00 GMT)
Session 15B: Jul 8 (21:00-22:00 GMT)
Abstract: Named entity recognition is a key component of many text processing pipelines and it is thus essential for this component to be robust to different types of input. However, domain transfer of NER models with data from multiple genres has not been widely studied. To this end, we conduct NER experiments in three predictive setups on data from: a) multiple domains; b) multiple domains where the genre label is unknown at inference time; c) domains not encountered in training. We introduce a new architecture tailored to this task by using shared and private domain parameters and multi-task learning. This consistently outperforms all other baseline and competitive methods on all three experimental setups, with differences ranging between +1.95 to +3.11 average F1 across multiple genres when compared to standard approaches. These results illustrate the challenges that need to be taken into account when building real-world NLP applications that are robust to various types of text and the methods that can help, at least partially, alleviate these issues.
You can open the pre-recorded video in a separate window.
NOTE: The SlidesLive video may display a random order of the authors. The correct author list is shown at the top of this webpage.

Similar Papers