Fast and Accurate Deep Bidirectional Language Representations for Unsupervised Learning

Joongbo Shin, Yoonhyung Lee, Seunghyun Yoon, Kyomin Jung

Abstract Paper Share

NLP Applications Long Paper

Session 1B: Jul 6 (06:00-07:00 GMT)
Session 2B: Jul 6 (09:00-10:00 GMT)
Abstract: Even though BERT has achieved successful performance improvements in various supervised learning tasks, BERT is still limited by repetitive inferences on unsupervised tasks for the computation of contextual language representations. To resolve this limitation, we propose a novel deep bidirectional language model called a Transformer-based Text Autoencoder (T-TA). The T-TA computes contextual language representations without repetition and displays the benefits of a deep bidirectional architecture, such as that of BERT. In computation time experiments in a CPU environment, the proposed T-TA performs over six times faster than the BERT-like model on a reranking task and twelve times faster on a semantic similarity task. Furthermore, the T-TA shows competitive or even better accuracies than those of BERT on the above tasks. Code is available at https://github.com/joongbo/tta.
You can open the pre-recorded video in a separate window.
NOTE: The SlidesLive video may display a random order of the authors. The correct author list is shown at the top of this webpage.

Similar Papers

DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference
Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, Jimmy Lin,
A representative figure from paper main.204
MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices
Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, Denny Zhou,
A representative figure from paper main.195
Span Selection Pre-training for Question Answering
Michael Glass, Alfio Gliozzo, Rishav Chakravarti, Anthony Ferritto, Lin Pan, G P Shrivatsa Bhargav, Dinesh Garg, Avi Sil,
A representative figure from paper main.247
schuBERT: Optimizing Elements of BERT
Ashish Khetan, Zohar Karnin,
A representative figure from paper main.250