Stolen Probability: A Structural Weakness of Neural Language Models

David Demeter, Gregory Kimmel, Doug Downey

Abstract Paper Share

Machine Learning for NLP Short Paper

Session 4A: Jul 6 (17:00-18:00 GMT)
Session 5A: Jul 6 (20:00-21:00 GMT)
Abstract: Neural Network Language Models (NNLMs) generate probability distributions by applying a softmax function to a distance metric formed by taking the dot product of a prediction vector with all word vectors in a high-dimensional embedding space. The dot-product distance metric forms part of the inductive bias of NNLMs. Although NNLMs optimize well with this inductive bias, we show that this results in a sub-optimal ordering of the embedding space that structurally impoverishes some words at the expense of others when assigning probability. We present numerical, theoretical and empirical analyses which show that words on the interior of the convex hull in the embedding space have their probability bounded by the probabilities of the words on the hull.
You can open the pre-recorded video in a separate window.
NOTE: The SlidesLive video may display a random order of the authors. The correct author list is shown at the top of this webpage.

Similar Papers