Logical Natural Language Generation from Open-Domain Tables

Wenhu Chen, Jianshu Chen, Yu Su, Zhiyu Chen, William Yang Wang

Abstract Paper Share

Generation Long Paper

Session 14A: Jul 8 (17:00-18:00 GMT)
Session 15B: Jul 8 (21:00-22:00 GMT)
Abstract: Neural natural language generation (NLG) models have recently shown remarkable progress in fluency and coherence. However, existing studies on neural NLG are primarily focused on surface-level realizations with limited emphasis on logical inference, an important aspect of human thinking and language. In this paper, we suggest a new NLG task where a model is tasked with generating natural language statements that can be logically entailed by the facts in an open-domain semi-structured table. To facilitate the study of the proposed logical NLG problem, we use the existing TabFact dataset featured with a wide range of logical/symbolic inferences as our testbed, and propose new automatic metrics to evaluate the fidelity of generation models w.r.t.\ logical inference. The new task poses challenges to the existing monotonic generation frameworks due to the mismatch between sequence order and logical order. In our experiments, we comprehensively survey different generation architectures (LSTM, Transformer, Pre-Trained LM) trained with different algorithms (RL, Adversarial Training, Coarse-to-Fine) on the dataset and made following observations: 1) Pre-Trained LM can significantly boost both the fluency and logical fidelity metrics, 2) RL and Adversarial Training are trading fluency for fidelity, 3) Coarse-to-Fine generation can help partially alleviate the fidelity issue while maintaining high language fluency. The code and data are available at https://github.com/wenhuchen/LogicNLG.
You can open the pre-recorded video in a separate window.
NOTE: The SlidesLive video may display a random order of the authors. The correct author list is shown at the top of this webpage.

Similar Papers

Designing Precise and Robust Dialogue Response Evaluators
Tianyu Zhao, Divesh Lala, Tatsuya Kawahara,
A representative figure from paper main.4
End-to-End Bias Mitigation by Modelling Biases in Corpora
Rabeeh Karimi Mahabadi, Yonatan Belinkov, James Henderson,
A representative figure from paper main.769
Few-Shot NLG with Pre-Trained Language Model
Zhiyu Chen, Harini Eavani, Wenhu Chen, Yinyin Liu, William Yang Wang,
A representative figure from paper main.18